Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898921

RESUMO

We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.


Assuntos
Matriz Óssea , Osteoporose , Adulto , Masculino , Ratos , Animais , Humanos , Camundongos , Tecidos Suporte , Diferenciação Celular , Fibroblastos , Matriz Extracelular , Colágeno , Osteogênese , Organoides , Materiais Biocompatíveis , Células Cultivadas , Engenharia Tecidual , Mamíferos
2.
Brain Behav Immun ; 115: 517-534, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967665

RESUMO

BACKGROUND: Increasing evidence highlights the importance of novel players in Alzheimer's disease (AD) pathophysiology, including alterations of lipid metabolism and neuroinflammation. Indeed, a potential involvement of Proprotein convertase subtilisin/kexin type 9 (PCSK9) in AD has been recently postulated. Here, we first investigated the effects of PCSK9 on neuroinflammation in vitro. Then, we examined the impact of a genetic ablation of PCSK9 on cognitive performance in a severe mouse model of AD. Finally, in the same animals we evaluated the effect of PCSK9 loss on Aß pathology, neuroinflammation, and brain lipids. METHODS: For in vitro studies, U373 human astrocytoma cells were treated with Aß fibrils and human recombinant PCSK9. mRNA expression of the proinflammatory cytokines and inflammasome-related genes were evaluated by q-PCR, while MCP-1 secretion was measured by ELISA. For in vivo studies, the cognitive performance of a newly generated mouse line - obtained by crossing 5XFADHet with PCSK9KO mice - was tested by the Morris water maze test. After sacrifice, immunohistochemical analyses were performed to evaluate Aß plaque deposition, distribution and composition, BACE1 immunoreactivity, as well as microglia and astrocyte reactivity. Cholesterol and hydroxysterols levels in mouse brains were quantified by fluorometric and LC-MS/MS analyses, respectively. Statistical comparisons were performed according to one- or two-way ANOVA, two-way repeated measure ANOVA or Chi-square test. RESULTS: In vitro, PCSK9 significantly increased IL6, IL1B and TNFΑ mRNA levels in Aß fibrils-treated U373 cells, without influencing inflammasome gene expression, except for an increase in NLRC4 mRNA levels. In vivo, PCSK9 ablation in 5XFAD mice significantly improved the performance at the Morris water maze test; these changes were accompanied by a reduced corticohippocampal Aß burden without affecting plaque spatial/regional distribution and composition or global BACE1 expression. Furthermore, PCSK9 loss in 5XFAD mice induced decreased microgliosis and astrocyte reactivity in several brain regions. Conversely, knocking out PCSK9 had minimal impact on brain cholesterol and hydroxysterol levels. CONCLUSIONS: In vitro studies showed a pro-inflammatory effect of PCSK9. Consistently, in vivo data indicated a protective role of PCSK9 ablation against cognitive impairments, associated with improved Aß pathology and attenuated neuroinflammation in a severe mouse model of AD. PCSK9 may thus be considered a novel pharmacological target for the treatment of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Animais , Camundongos Transgênicos , Pró-Proteína Convertase 9/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Doenças Neuroinflamatórias , Cromatografia Líquida , Inflamassomos , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Espectrometria de Massas em Tandem , Doença de Alzheimer/metabolismo , RNA Mensageiro , Colesterol , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
3.
Front Endocrinol (Lausanne) ; 14: 1234569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732119

RESUMO

Background: Disordered and hypomineralized woven bone formation by dysfunctional mesenchymal stromal cells (MSCs) characterize delayed fracture healing and endocrine -metabolic bone disorders like fibrous dysplasia and Paget disease of bone. To shed light on molecular players in osteoblast differentiation, woven bone formation, and mineralization by MSCs we looked at the intermediate filament desmin (DES) during the skeletogenic commitment of rat bone marrow MSCs (rBMSCs), where its bone-related action remains elusive. Results: Monolayer cultures of immunophenotypically- and morphologically - characterized, adult male rBMSCs showed co-localization of desmin (DES) with vimentin, F-actin, and runx2 in all cell morphotypes, each contributing to sparse and dense colonies. Proteomic analysis of these cells revealed a topologically-relevant interactome, focused on cytoskeletal and related enzymes//chaperone/signalling molecules linking DES to runx2 and alkaline phosphatase (ALP). Osteogenic differentiation led to mineralized woven bone nodules confined to dense colonies, significantly smaller and more circular with respect to controls. It significantly increased also colony-forming efficiency and the number of DES-immunoreactive dense colonies, and immunostaining of co-localized DES/runx-2 and DES/ALP. These data confirmed pre-osteoblastic and osteoblastic differentiation, woven bone formation, and mineralization, supporting DES as a player in the molecular pathway leading to the osteogenic fate of rBMSCs. Conclusion: Immunocytochemical and morphometric studies coupled with proteomic and bioinformatic analysis support the concept that DES may act as an upstream signal for the skeletogenic commitment of rBMSCs. Thus, we suggest that altered metabolism of osteoblasts, woven bone, and mineralization by dysfunctional BMSCs might early be revealed by changes in DES expression//levels. Non-union fractures and endocrine - metabolic bone disorders like fibrous dysplasia and Paget disease of bone might take advantage of this molecular evidence for their early diagnosis and follow-up.


Assuntos
Adenocarcinoma , Doenças Ósseas Metabólicas , Calcinose , Células-Tronco Mesenquimais , Osteíte Deformante , Masculino , Animais , Ratos , Osteogênese , Filamentos Intermediários , Subunidade alfa 1 de Fator de Ligação ao Core , Desmina , Proteômica , Fosfatase Alcalina
4.
Antibiotics (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508200

RESUMO

Two antimicrobial agents such as silver nanoparticles (AgNPs) and titanium dioxide (TiO2) have been formulated with natural polysaccharides (chitosan or alginate) to develop innovative inks for the rapid, customizable, and extremely accurate manufacturing of 3D-printed scaffolds useful as dressings in the treatment of infected skin wounds. Suitable chemical-physical properties for the applicability of these innovative devices were demonstrated through the evaluation of water content (88-93%), mechanical strength (Young's modulus 0.23-0.6 MPa), elasticity, and morphology. The antimicrobial tests performed against Staphylococcus aureus and Pseudomonas aeruginosa demonstrated the antimicrobial activities against Gram+ and Gram- bacteria of AgNPs and TiO2 agents embedded in the chitosan (CH) or alginate (ALG) macroporous 3D hydrogels (AgNPs MIC starting from 5 µg/mL). The biocompatibility of chitosan was widely demonstrated using cell viability tests and was higher than that observed for alginate. Constructs containing AgNPs at 10 µg/mL concentration level did not significantly alter cell viability as well as the presence of titanium dioxide; cytotoxicity towards human fibroblasts was observed starting with an AgNPs concentration of 100 µg/mL. In conclusions, the 3D-printed dressings developed here are cheap, highly defined, easy to manufacture and further apply in personalized antimicrobial medicine applications.

5.
Int J Biol Macromol ; 242(Pt 1): 124454, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37076070

RESUMO

Derivatives [i.e. proteins and exopolysaccharides (EPS)] from Lactobacillus delbrueckii subsp. bulgaricus (LB) were extracted, characterized, and for the first time used in the production of novel self-crosslinking 3D printed alginate/hyaluronic acid (ALG/HA) hydrogels, as high-value functional biomaterials with therapeutic potentials in regenerative medicine applications. Derivatives coming from two different LB strains, LB1865 and LB1932, were tested in-vitro and compared for their cytotoxicity and effect on proliferation and migration on human fibroblast. EPS received particular attention as showing relevant dose-dependent cytocompatibility against the human fibroblast. The derivatives showed an ability to increase cell proliferation and migration, quantifiable between 10 and 20 % if compared to controls, with higher values for the derivatives obtained from the LB1932 strain. These were explained by liquid chromatography-mass spectrometry targeted protein biomarker analysis as a decrease in matrix-degrading and proapoptotic proteins, associated with an increase in collagen and antiapoptotic proteins production. LB1932 enriched hydrogel was found to be of benefit compared to control dressings, giving the more promising results as potential for in vivo skin wound healing tests.


Assuntos
Lactobacillus delbrueckii , Humanos , Lactobacillus delbrueckii/metabolismo , Ácido Hialurônico/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Cicatrização , Impressão Tridimensional
6.
Micromachines (Basel) ; 14(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677198

RESUMO

The growing demand for personalized medicine requires innovation in drug manufacturing to combine versatility with automation. Here, three-dimensional (3D) printing was explored for the production of chitosan (CH)/alginate (ALG)-based hydrogels intended as active dressings for wound healing. ALG hydrogels were loaded with 0.75% w/v silver sulfadiazine (SSD), selected as a drug model commonly used for the therapeutic treatment of infected burn wounds, and four different 3D CH/ALG architectures were designed to modulate the release of this active compound. CH/ALG constructs were characterized by their water content, elasticity and porosity. ALG hydrogels (Young's modulus 0.582 ± 0.019 Mpa) were statistically different in terms of elasticity compared to CH (Young's modulus 0.365 ± 0.015 Mpa) but very similar in terms of swelling properties (water content in ALG: 93.18 ± 0.88% and in CH: 92.76 ± 1.17%). In vitro SSD release tests were performed by using vertical diffusion Franz cells, and statistically significant different behaviors in terms of the amount and kinetics of drugs released were observed as a function of the construct. Moreover, strong antimicrobial potency (100% of growth inhibition) against Staphylococcus aureus and Pseudomonas aeruginosa was demonstrated depending on the type of construct, offering a proof of concept that 3D printing techniques could be efficiently applied to the production of hydrogels for controlled drug delivery.

7.
Food Chem X ; 13: 100271, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499009

RESUMO

A simple and reliable targeted liquid chromatography-electrospray-tandem mass spectrometry (LC-MS/MS) method was developed and validated through the selection of two biomarker peptides for the identification and determination of bovine insulin like growth factor-1 (IGF-1) in milk samples. Two urea-based sample extraction procedures were tested. The validation results provided detection limits at the 1-5 ng IGF-1/mL level as a function of the milk matrix, precision ranged from 3 to 8% and the method accuracy in the different milk matrices was assured. Finally, IGF-1 was measured in milk samples obtained by treatment with eleven different technological processes: IGF-1 concentrations were spread over a wide range from 11.2 ± 0.3 ng/mL to 346 ± 8 ng/mL with a median of 57.0 ± 0.2 ng/mL. The highest amount of IGF-1 was found in fresh whole milk samples and no significant correlation was found between the total milk protein content and the IGF-1 concentration level.

8.
Tissue Eng Part C Methods ; 28(4): 148-157, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357965

RESUMO

Collagens, elastin, fibrillin, decorin, and laminin are key constituents of the extracellular matrix and basement membrane of mammalian organs. Thus, changes in their quantities may influence the mechanochemical regulation of resident cells. Since maintenance of a native stromal composition is a requirement for three-dimensional (3D) matrix-based recellularization techniques in tissue engineering, we studied the influence of the decellularization detergents on these proteins in porcine kidney, liver, pancreas, and skin. Using a quick thawing/quick microwave-assisted decellularization protocol and two different detergents, sodium dodecyl sulfate (SDS) vs Triton X-100 (TX100), at identical concentration, variations in matrix conservation of stromal proteins were detected by liquid chromatography-mass spectrometry coupled to light and scanning electron microscopies, in dependence on each detergent. In all organs tested except pancreas, collagens were retained to a statistically significant level using the TX100-based protocol. In contrast fibrillin, elastin (except in kidney), and decorin (only in liver) were better preserved with the SDS-dependent protocol. Irrespective of the detergent used, laminin always remained at an irrelevant level. Our results prompt attention to the type of detergent in organ decellularization, suggesting that its choice may influence morphoregulatory inputs peculiar to the type of 3D bioartificial mammalian organ to be reconstructed. Impact statement Simple change of the protocol's main detergent leads to a very substantial difference in the panel of the stromal proteins detected by qualitative and semiquantitative mass spectrometry in acellular porcine matrices. This remarkable methodological variable promises to yield proteomic reference panels in a number of different species-specific acellular matrices allowing for selective retainment of peculiar mechanochemical inputs, to differently address the development of the seeded cells in relation to the type of organ to be bioartificially reconstructed.


Assuntos
Detergentes , Tecidos Suporte , Animais , Colágeno/metabolismo , Decorina/metabolismo , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacologia , Elastina/metabolismo , Matriz Extracelular/metabolismo , Fibrilinas/metabolismo , Laminina/metabolismo , Mamíferos , Espectrometria de Massas , Octoxinol/metabolismo , Proteômica , Suínos , Engenharia Tecidual/métodos , Tecidos Suporte/química
9.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164146

RESUMO

3D-printed hydrogels are particularly advantageous as drug-delivery platforms but their loading with water-soluble active compounds remains a challenge requiring the development of innovative inks. Here, we propose a new 3D extrusion-based approach that, by exploiting the internal gelation of the alginate, avoids the post-printing crosslinking process and allows the loading of epirubicin-HCl (EPI). The critical combinations of alginate, calcium carbonate and d-glucono-δ-lactone (GDL) combined with the scaffold production parameters (extrusion time, temperature, and curing time) were evaluated and discussed. The internal gelation in tandem with 3D extrusion allowed the preparation of alginate hydrogels with a complex shape and good handling properties. The dispersion of epirubicin-HCl in the hydrogel matrix confirmed the potential of this self-crosslinking alginate-based ink for the preparation of 3D-printed drug-delivery platforms. Drug release from 3D-printed hydrogels was monitored, and the cytotoxic activity was tested against MCF-7 cells. Finally, the change in the expression pattern of anti-apoptotic, pro-apoptotic, and autophagy protein markers was monitored by liquid-chromatography tandem-mass-spectrometry after exposure of MCF-7 to the EPI-loaded hydrogels.


Assuntos
Alginatos , Portadores de Fármacos , Epirubicina , Hidrogéis , Impressão Tridimensional , Alginatos/química , Alginatos/farmacologia , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Epirubicina/química , Epirubicina/farmacocinética , Epirubicina/farmacologia , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Células MCF-7
10.
Biochim Biophys Acta Gen Subj ; 1865(1): 129734, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956750

RESUMO

BACKGROUND: The investigation of the interactions between cells and active materials is pivotal in the emerging 3D printing-biomaterial application fields. Here, lipidomics has been used to explore the early impact of alginate (ALG) hydrogel architecture (2D films or 3D printed scaffolds) and the type of gelling agent (CaCl2 or FeCl3) on the lipid profile of human fibroblasts. METHODS: 2D and 3D ALG scaffolds were prepared and characterized in terms of water content, swelling, mechanical resistance and morphology before human fibroblast seeding (8 days). Using a liquid chromatography-triple quadrupole-tandem mass spectrometry approach, selected ceramides (CER), lysophosphatidylcholines (LPC), lysophosphatidic acids (LPA) and free fatty acids (FFA) were analyzed. RESULTS: The results showed a clear alteration in the CER expression profile depending of both the geometry and the gelling agent used to prepare the hydrogels. As for LPCs, the main parameter affecting their distribution is the scaffold architecture with a significant decrease in the relative expression levels of the species with higher chain length (C20 to C22) for 3D scaffolds compared to 2D films. In the case of FFAs and LPAs only slight differences were observed as a function of scaffold geometry or gelling agent. CONCLUSIONS: Variations in the cell membrane lipid profile were observed for 3D cell cultures compared to 2D and these data are consistent with activation processes occurring through the mutual interactions between fibroblasts and ALG support. These unknown physiologically relevant changes add insights into the discussion about the relationship between biomaterial and the variations of cell biological functions.


Assuntos
Alginatos/química , Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Tecidos Suporte/química , Alginatos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Células Cultivadas , Ceramidas/análise , Ceramidas/metabolismo , Fibroblastos/química , Humanos , Lipídeos/análise , Impressão Tridimensional
11.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353965

RESUMO

Here, a formulation of silver nanoparticles (AgNPs) and two natural polymers such as alginate (ALG) and nanocrystalline cellulose (CNC) was developed for the 3D printing of scaffolds with large surface area, improved mechanical resistance and sustained capabilities to promote antimicrobial and cytotoxic effects. Mechanical resistance, water content, morphological characterization and silver distribution of the scaffolds were provided. As for applications, a comparable antimicrobial potency against S. aureus and P. aeruginosa was demonstrated by in vitro tests as function of the AgNP concentration in the scaffold (Minimal Inhibitory Concentration value: 10 mg/mL). By reusing the 3D system the antimicrobial efficacy was demonstrated over at least three applications. The cytotoxicity effects caused by administration of AgNPs to hepatocellular carcinoma (HepG2) cell culture through ALG and ALG/CNC scaffold were discussed as a function of time and dose. Finally, the liquid chromatography-mass spectrometry (LC-MS) technique was used for targeted analysis of pro-apoptotic initiation and executioner caspases, anti-apoptotic and proliferative proteins and the hepatocyte growth factor, and provided insights about molecular mechanisms involved in cell death induction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...